
Computer Science and Artificial Intelligence Laboratory

Victim Migration: Dynamically Adapting Between
Private and Shared CMP Caches
Michael Zhang, Krste Asanovic

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

October 10, 2005MIT-CSAIL-TR-2005-064
MIT-LCS-TR-1006

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
10 OCT 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Victim Migration: Dynamically Adapting Between Private and Shared
CMP Caches

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Computer Science and Artificial
Intelligence Laboratory (CSAIL),32 Vassar Street,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Victim Migration: Dynamically Adapting Between
Private and Shared CMP Caches

Michael Zhang and Krste Asanović

MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, 32 Vassar Street, Cambridge, Massachusetts�

rzhang, krste � @csail.mit.edu

Abstract

Future CMPs will have more cores and greater on-
chip cache capacity. The on-chip cache can either be
divided into separate private L2 caches for each core,
or treated as a large shared L2 cache. Private caches
provide low hit latency but low capacity, while shared
caches have higher hit latencies but greater capacity.
Victim replication was previously introduced as a way
of reducing the average hit latency of a shared cache
by allowing a processor to make a replica of a pri-
mary cache victim in its local slice of the global L2
cache. Although victim replication performs well on
multithreaded and single-threaded codes, it performs
worse than the private scheme for multiprogrammed
workloads where there is little sharing between the dif-
ferent programs running at the same time.

In this paper, we propose victim migration, which im-
proves on victim replication by adding an additional set
of migration tags on each node which are used to im-
plement an exclusive cache policy for replicas. When a
replica has been created on a remote node, it is not also
cached on the home node, but only recorded in the mi-
gration tags. This frees up space on the home node to
store shared global lines or replicas for the local pro-
cessor.

We show that victim migration performs better than
private, shared, and victim replication schemes across
a range of single threaded, multithreaded, and multi-
programmed workloads, while using less area than a
private cache design. Victim migration provides a re-
duction in average memory access latency of up to 10%
over victim replication.

1. Introduction

Future chip-scale multiprocessors (CMPs) are likely
to continue to increase both the number of cores and
the total cache capacity on chip. Off-chip misses will
remain expensive, but increases in clock frequency to-
gether with worsening relative wire delays will also in-

crease latencies for cross-chip communication, reaching
tens of clock cycles in future technologies [1, 12]. Effec-
tive use of on-chip cache must therefore consider both
the cost of off-chip misses and the cost of cross-chip
communications.

Two baseline outer-level cache designs, private and
shared, illustrate the trade-offs between these two com-
ponents of effective memory access latency. A private
design dedicates a slice of the on-chip L2 cache stor-
age as a private L2 cache for each processor core. The
shared design aggregates all the L2 cache capacity to
form a single L2 cache shared by all the cores.

The private design has low L2 hit latency, as the pri-
vate L2 is physically co-located with the processor core
and has much smaller area than a shared cache. This
provides good performance provided the working set fits
within the local L2 slice. The disadvantage of the pri-
vate L2 scheme is that effective on-chip cache capac-
ity is reduced for shared data, as each core must retain
its own copy of any shared data block. Also, the fixed
partitioning of resources does not allow a thread with a
larger working set to “borrow” L2 cache capacity from
the private caches of other processors hosting threads
with smaller working sets.

The shared design reduces the off-chip miss rate for
large shared working sets, as only a single on-chip copy
is required for any shared data. However, large shared
L2 caches have worse access latency than a small pri-
vate L2 cache and can suffer from inter-thread cache
conflicts.

Many studies have shown that either private or shared
caches can considerably outperform the other, depend-
ing on the specific characteristics of the workload [27,
15, 8, 15]. This observation has motivated several pro-
posals to develop hybrid architectures that retain the ad-
vantages of both private and shared designs.

A number of proposals seek to reduce the effective
access latency of a large shared cache by adopting a
non-uniform cache access (NUCA) architecture. Cur-
rent shared L2 caches [4, 18, 25] are constructed using
a “dancehall” configuration, as shown in the left of Fig-

ure 1, where processors with private L1 caches are on
one side of an interconnect crossbar and a banked shared
L2 cache is on the other. To reduce access latency and
energy consumption, large caches are physically divided
into many small banks or slices. Current designs use a
fixed worst-case latency to access any slice, but as cross-
chip latencies grow, this will result in unacceptable hit
times. NUCA [17] designs allow access latency to
vary depending on the relative placement of the proces-
sor and L2 slice containing the data. Dynamic NUCA
schemes have been proposed for uniprocessors [17, 7],
where frequently-accessed cache blocks gradually mi-
grate closer to the processor. These schemes are con-
siderably more complicated when applied to multipro-
cessors with dancehall configurations [5, 8, 15]. These
schemes require some form of duplicated L2 tag kept lo-
cal to each processor to reduce the number of slices that
must be searched to locate an on-chip block. Further, all
such local tags must be kept consistent with any block
migration triggered by a remote processor, imposing ad-
ditional serialization constraints on otherwise indepen-
dent cache accesses [5, 8, 15].

An alternative base structure is a tiled CMP as shown
on the right side of Figure 1, where the CMP is orga-
nized as an array of replicated tiles connected over a
switched network. Each tile contains a processor with
L1 caches, a slice of the L2 cache, and a connection to
the on-chip network. Tiled CMPs scale well to larger
processor counts and can easily support families of prod-
ucts with varying numbers of tiles, including the op-
tion of connecting multiple separately tested and speed-
binned die within a single package. A tiled CMP is a
natural structure for private L2 caches, but can also be
used to implement a shared L2 cache [27]. Recent work
has shown how a victim replication (VR) scheme can re-
duce the effective hit latency of a tiled shared L2 cache
by placing a copy of an evicted L1 cache block in the lo-
cal slice of the L2 instead of sending it back to the home
tile [27]. If the processor requests the same block again,
it can now access the local copy instead of the remote
original. This approach provides many of the same ben-
efits as a dynamic NUCA scheme, but with much less
complexity.

This earlier study shows that victim replication has
better overall performance than either private or shared
schemes for multi-threaded and single-threaded work-
loads [27]. However, as we show in the evaluation
section, the victim replication scheme does not per-
form as well as private caches when running a multi-
programmed workload, where each processor is running
an independent program. The problem in this case is that
private data is placed on chip twice, once at the home
tile and once as a replica at the processor using the data.

This reduces effective on-chip capacity and causes con-
flicts between independent threads.

In this paper, we introduce victim migration (VM),
which improves on victim replication by providing ad-
ditional migration tags at the home tile. These additional
tags are used to implement an exclusive cache policy for
replicas, where the regular tag and data storage of the
home tile’s L2 slice is freed when a replica is present on
a remote tile. The newly vacated home block can then
be reused to hold a different shared block or a replica
for the processor local to the home tile, while the mi-
gration tag points to the remote replica data. We show
how the total area overhead of this scheme is less than
for a private cache scheme, while providing the best
performance over all workloads (single-threaded, multi-
threaded, and multi-programmed) as compared to pri-
vate, shared, or victim replication schemes.

2. Baseline Tiled CMP Designs

In this section, we describe three baseline L2 cache
configurations: private, shared, and victim replication.
The tiled CMP model used is shown in Figure 1. Ad-
ditional assumptions about the model are as follows: 1)
The primary instruction and data caches are kept small
and private to give the lowest access latency, 2) The lo-
cal L2 cache slice is tightly coupled to the rest of the tile
and is accessed with a fixed latency pipeline. The tag,
status, and directory bits are kept separate from the data
arrays and close to the processor and router for quick tag
resolution, 3) Accesses to L2 cache slices on other tiles
travel over the on-chip network and experience varying
access latencies depending on inter-tile distance and net-
work congestion, 4) A generic four-state MESI protocol
with reply-forwarding is used as the baseline protocol
for on-chip data coherence. Each CMP design uses mi-
nor variants of this protocol.

2.1. Private Design

In the private design (Figure 2), the processor uses
the local L2 slice as a private L2 cache, as is the case for
several commercial CMPs [6, 16]. This is equivalent to
simply shrinking a traditional multi-chip multiprocessor
onto a single chip. Snoopy protocols scale poorly to fu-
ture technologies and large numbers of nodes, and so we
employ a high-bandwidth on-chip directory to maintain
coherence among the private L2 caches.

The directory is held as a duplicate set of L2 tags dis-
tributed across tiles by address [4]. For each processor
accessing a particular cache block, a copy of the block
must be resident in its private L2 cache, such as block
i shown in Figure 2. In addition, an on-chip directory
holding an entry for block i is stored at blk i’s home tile.

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

C L1$

L2$
Slice

R

L2$
Tag

Intra-Chip Router

C

L1$

C

L1$

C

L1$

C

L1$

C

L1$

C

L1$

C

L1$

C

L1$

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

L2$
Slice

A 8-Node “Dance-Hall” CMP A 4 x 4 Tiled CMP
Figure 1. Dancehall versus tiled chip multiprocessor designs.

L2$
Data

L2$
Tag

Dir.
(Dup.
Tags)

Router

Core L1$

L2$
Data

L2$
Tag

Dir.
(Dup.
Tags)

Router

Core L1$

L2$
Data

L2$
Tag

Dir.
(Dup.
Tags)

Router

Core L1$

L2$
Data

L2$
Tag

Dir.
(Dup.
Tags)

Router

Core L1$

Tag Index OffsetAddress:

Home Select

(Home Tile)Tile 0Tile 1

Tile 2Tile 3

blk i

blk i

blk i blk i

Figure 2. The private L2 design treats each L2 slice as a private cache.

Figure 3 shows a simplified two-tile example of how this
scheme works. Each tile has a direct-mapped L2 cache
with four cache blocks. To determine address A’s status
on-chip, we use the lower bits of the index, the home
select bits, to find A’s home tile. The remaining bits
of the index are used to find the duplicate tag entry cor-
responding to A in the directory on the home tile. This
entry stores the duplicates of all L2 tags in the cache set
that A maps to from all the tiles. In this example, A maps
to set 3, and the duplicated tag entry has the L2 tags of
set 3 from both tile 0 and tile 1. With these tags, we can
easily deduce the directory information of A. Therefore,
we have a perfect directory for all of the cache blocks
on chip. The main drawback of this approach is the area
overhead, which we discuss later.

Cache-to-cache transfers are used to reduce off-chip
requests for local L2 misses, but these operations require
three-way communication between the requester tile, the
directory tile, and the owner tile. This operation is more
costly than hits to global locations in a shared design,
where a three-way cache-to-cache transfer only occurs
if the block is held exclusive.

2.2. Shared Scheme

In the shared design, all of the L2 slices are man-
aged as a single shared L2 cache with addresses inter-
leaved across tiles. The shared design is used by a num-
ber of existing CMP designs [4, 18, 25, 21], where sev-
eral processor cores share a banked L2 cache. Figure 4
shows the implementation in detail. Each address is stat-
ically mapped to a home tile (identical to the private di-
rectory mapping scheme). On an L1 cache miss, the
fetch request is processed by the L2 slice at the requested
block’s home tile. Latency to the L2 slice varies accord-
ing to network congestion and the number of network
hops between the requesting processor and the home
tile. All the L1 caches are kept coherent using additional
directory bits on each L2 block, which track which tiles
have remote copies. For the 8-node implementation used
in our evaluation, this adds 3 state bits and an 8-bit shar-
ing vector to each L2 cache line. The overhead of the
sharing vector will grow as the processor count grows,
but a number of previously proposed techniques could
be used to reduce directory overhead. Some requests
are satisfied using cache-to-cache transfers between L1
caches using reply-forwarding.

2.3. Victim Replication

Victim replication (VR) [27] is a simple hybrid
scheme that tries to combine the large capacity of the
shared design with the low hit latency of the private de-
sign. Victim replication is based on the shared design,
but in addition it tries to capture L1 evictions in the local

L2 slice. Each retained victim is a local L2 replica of a
block that already exists in the L2 cache of the remote
home tile.

When a processor misses in the shared L2 cache, a
block is brought in from memory and placed in the on-
chip L2 of the home tile, as in the shared design. The
requested block is also directly forwarded to the pri-
mary cache of the requesting processor. If the block’s
residency in the primary cache is terminated because of
an incoming invalidation or writeback request, we sim-
ply follow the usual protocol of the shared design. If a
primary cache block is evicted because of a conflict or
capacity miss, VR attempts to keep a copy of the vic-
tim block in the local slice to reduce subsequent access
latency to the same block.

While a replica can be created for for all primary
cache victims, VR never evicts a global block with re-
mote sharers in favor of a local replica, as an actively
shared global block is likely to be in use. VR also never
replicates a victim whose home tile happens to be local.

All primary cache misses must now first check the
local L2 tags in case there’s a valid replica. On a replica
miss, the request is forwarded to the home tile. On a
replica hit, the replica is invalidated in the local L2 slice
and moved into the primary cache. When a downgrade
or invalidation request is received from the home tile, the
L2 tags must also be checked in addition to the primary
cache tags.

3. Victim Migration

Victim Migration (VM) is a flexible hybrid cache ar-
chitecture that can dynamically adapt to mimic the be-
havior of pure shared or pure private designs. Figure 5
shows the cache hierarchy arrangement for VM. Each
L2 consists of a tag array, a data array, and directory
bits, similar to the shared design. In addition, each L2
also has an extra set of tags, we refer to them as the VM
tag array. For now, we assume that the size and associa-
tivity of the the VM tag array is identical to the regular
L2 tags.

Similar to previous designs, each cache block is stat-
ically mapped to a home tile in VM, which holds the
block in one of two forms. First, it can be managed ex-
actly like the shared design Second, if the block is being
actively shared by another tile, either as an regular L1
cache block or an L2 replica, the L2 cache may only
store the tag of the block in the VM tag array. By using
the VM tag array, victim migration removes the unnec-
essary duplication of data at the home tile, freeing up
space to hold more replicas or other global blocks. The
only added complexity is that both the regular tags and
the VM tag array must be searched during a data fetch.
If a hit is found in the VM tags, the request is satisfied

tile 0, set 0

tile 0, set 1

tile 0, set 2

tile 0, set 3

tile 1, set 0

tile 1, set 1

tile 1, set 2

tile 1, set 3

tile 0, set 0 tile 1, set 0

tile 0, set 2 tile 1, set 2

tile 0, set 1 tile 1, set 1

tile 0, set 3 tile 1, set 3

Regular Tag Array Regular Tag Array

Duplicated Tag Array Duplicated Tag Array

Tile 0 Tile 1

Tag 1 offset1Address A:

Home Select

D
u

p
. T

ag
 In

d
ex

Index

Figure 3. Example of using duplicated L2 cache tags to maintain L2 data coherence.

Tag Index Offset

Tile 0Tile 1

Tile 2Tile 3

HS

L2$
Data

L2$
Tag

Dir

Router

Core L1$

L2$
Data

L2$
Tag

Dir

Router

Core L1$

L2$
Data

L2$
Tag

Dir

Router

Core L1$

L2$
Data

L2$
Tag

Dir

Router

Core L1$

blk i

blk iblk i

Address:

Home Select

(Home Tile)

Figure 4. The shared L2 design treats all L2 slices as part of a global shared cache.

L2$
Data

L2$
Tag

Dir

Router

Core L1$

VM
Tag

Tile 0Tile 1

Tile 2Tile 3

L2$
Data

L2$
Tag

Dir

Router

Core L1$

VM
Tag

L2$
Data

L2$
Tag

Dir

Router

Core L1$

VM
Tag

L2$
Data

L2$
Tag

Dir

Router

Core L1$

VM
Tag

blk i

blk iblk i

blk j

blk j

blk j

Tag Index Offset

Tile 0Tile 1

HSAddress:

Home Select

(Home Tile)

Figure 5. Illustration of Victim Migration.

through three-way cache-to-cache transfers using reply-
forwarding.

3.1. Management Policies

In this section, we provide a set of heuristics to effi-
ciently manage the cache capacity on-chip. Specifically,
we discuss three policies. First, the L2 refill policy deter-
mines where to place a cache block when the L2 receives
a memory reply for an L2 miss. Second, the L1 eviction
policy determines whether to replicate (and if so, where
to keep) an L1 victim in the local L2 slice. Third, if the
local L2 slice decides not to replicate an L1 victim and
sends it back to the home tile, the remote tile writeback
policy determines where to place the data if it is held in
the duplicated tags. We assume that all three policies
first look for invalid blocks in the main data and tag ar-
rays as these spaces can be used at no cost. The policies
describe below will only be followed if there are no in-
valid blocks.

L2 Refill Policy

The L2 refill policy is rather simple. We first look for
an invalid VM tag to hold the tag of the address only,
and forward the data to the requesting tile. If all the VM
tags are used, we randomly evict a block in the main data
array and write back any dirty data to memory if needed.

L1 Eviction Policy

The L1 eviction policy determines whether to replicate
an L1 victim, and if so, where to hold it in the local L2
slice. We first simultaneously search for an invalid VM
tag and an actively shared block in the regular tags. If
both exist, the tag of the actively shared block can be
moved to the invalid VM tag entry without losing infor-
mation. The L1 victim can safely overwrite the shared
block’s local data. As no data is evicted from the local
L2 cache, this operation should not cause performance
degradation. The only minor effect may come from the
possibly longer hit latency required to perform a three-
way cache-to-cache transfer when a remote request hits
in the VM tags when the line was previously stored in
the regular tags.

If the above scenario is not possible and we must
evict a valid block, we look to replace the following two
classes of block in descending priority order: 1) a global
block with no L1 sharers; 2) an existing replica block.
If neither of the two classes of block exist, we do not
replicate the L1 victim. This approach is similar to the
one used in [27].

Remote Tile Writeback Policy

This policy is used whenever a tile has to evict a line
back to the home node, either from its primary cache
when no replica can be created, or from the victim repli-
cas when they are themselves evicted. If the line is al-

ready held in the regular tag and data array, we perform
a conventional update. If the tag is held in VM tag array
and another tile still has a copy of the data, we simply
update the directory information in the VM tag. How-
ever, if the last on-chip copy of a cache block is sent
home and its tag is kept in the VM tag array, we must
decide if and where to keep this unique copy.

We first look for an actively shared global block,
which currently does not need the data array space to
store its data. This global block can be swapped with
the remote writeback. If we can find such a swap, no
data is evicted from the chip.

If this scenario is not possible, we use the approach
outlined in the L1 eviction policy to look for unowned
blocks, then replica blocks to replace. If a replica is re-
placed, there can be a ripple effect as the evicted replica
is written back to its own home node.

If no unowned blocks or replicas are found, we again
choose not to evict actively shared blocks as they are
likely to be in the active working set. In this case, the re-
mote tile writeback is evicted from the chip and written
back to memory if necessary.

4. Experimental Methodology

In this section, we describe the simulation frame-
work we used to evaluate the alternative cache designs.
To present a clearer picture of memory system behav-
ior, we use a simple in-order processor model and fo-
cus on the average raw memory latency seen by each
memory request. Naturally, overall system performance
can only be determined by co-simulation with a detailed
processor model, though we expect the overall perfor-
mance trend to follow average memory access latency.
Prefetching, decoupling, non-blocking caches, and out-
of-order execution are well-known microarchitectural
techniques which overlap memory latencies to reduce
their impact on performance. However, machines us-
ing these techniques complete instructions faster, and
are therefore relatively more sensitive to any latencies
that cannot be hidden. Also, these techniques are com-
plementary to the victim migration scheme, and cannot
provide the same benefit of reducing cross-chip traffic.

4.1. Simulator Setup and Parameters

We have implemented a full-system execution-driven
simulator based on the Bochs [19] system emulator.
We added a cycle-accurate cache and memory simula-
tor with detailed models of the primary caches, the L2
caches, the 2D mesh network, and the DRAM. Both
instruction and data memory reference streams are ex-
tracted from Bochs and fed into the detailed memory
simulator at run time. The combined limitations of

Bochs and our Linux port restricts our simulations to
8 processors. Results are obtained by running Linux
2.4.24 compiled for an x86 processor on an 8-way tiled
CMP arranged in a 4 � 2 grid.

Four cache configurations are simulated for each dif-
ferent design, as summarized in Table 1. To simplify
result reporting, all latencies are scaled to the access
time of the primary cache, which can be reached within
a single clock cycle. We assume a 70 nm technology
based on BPTM [10], thus use a a 16 FO4 clock cy-
cle for configuration 1, which has a smaller 16KB L1
cache, and a 24 FO4 clock cycle for configurations 2
through 4. Both of these cycle times represent modern
power-performance balanced pipeline designs [11, 24].
High-frequency designs might target a cycle time of 8–
12 FO4 delays [13, 23], in which case cycle latencies
can be multiplied appropriately. Five cycle access la-
tency is used for a 256KB L2 cache and six cycles for
512KB and 1MB caches. We also scale all latencies ap-
propriately for configuration 4, in which the L1 cache is
smaller. We model each hop in the network as taking 3
cycles, including the router latency and an optimally-
buffered inter-tile copper wire on a high metal layer.
Note that the worst case contention-free L2 hit latency
is between 29 to 32 cycles for these configurations, hint-
ing that even a small reduction in cross-chip accesses
could lead to significant performance gains. The L2
set-associativity (16-way) was chosen to be larger than
the number of tiles to reduce cache conflicts between
threads. For L2 associativities of 8 or less, we found
several workloads had significant inter-thread conflicts,
reflected by high off-chip miss rates.

4.2. Workloads

Table 2 summarizes the single-threaded, multi-
threaded, and multi-programmed workloads used to
evaluate the designs. All 12 SpecINT2000 benchmarks
are used as single-threaded workloads. They are com-
piled with the Intel C compiler (version 8.0.055) us-
ing -O3 -static -ipo -mp1 +FDO and use the
MinneSPEC large-reduced dataset as input. The multi-
programmed workloads are also created using a mixture
of the single-threaded SpecINT2000 benchmarks. Each
workload consists of 8 different programs, chosen at ran-
dom.

All 12 SpecINT2000 benchmarks are used as single-
threaded workloads. They are compiled with the In-
tel C compiler (version 8.0.055) using -O3 -static
-ipo -mp1 +FDO and use the MinneSPEC large-
reduced dataset as input. The multiprogrammed work-
loads are also created using a mixture of the single-
threaded SpecINT2000 benchmarks. Each workload
consists of 8 different programs, chosen at random.

All workloads were invoked in a runlevel without
superfluous processes/daemons to prevent non-essential
processes from interfering with the workload. Each sim-
ulation begins with the Linux boot sequence, but results
are only gathered after the workload begins execution
until completion.

Due to the long running nature of the workloads, we
used a sampling technique to reduce simulation time.
We extend the functional warming method for super-
scalars [26] to an SMP system, and fast-forward through
periods of execution while maintaining cache and direc-
tory state [3]. At the start of each measurement sample,
we run the detailed timing model for 10,000 cycles to
warm up the pipelines for the cache, DRAM, and net-
work models. After this warming phase, we gather de-
tailed statistics for one million instructions, before re-
entering fast-forward mode. Detailed samples are taken
at random intervals during execution and include 33%
of all instructions executed, i.e., fast-forward intervals
average around five million instructions. The number
of samples taken for each workload ranges from around
150 to 1,000. To minimize the bias in the results intro-
duced by system variability [2], we ran multiple runs of
each workload with varying sample lengths and frequen-
cies. Results show that the variability is insignificant for
our workloads.

5. Simulation Results

In this section, we present the results of all four
designs for multi-threaded, single-threaded, and multi-
programmed workloads.

5.1. Multi-Threaded Workloads

Figures 6 to 9 show the key result, the average mem-
ory access latency seen by a processor. The mini-
mum latency is one cycle, when all accesses hit in the
L1 cache. In the following, we take Configuration 1
(8+8/256/16FO4), and give a simple analysis of how
each cache design alternative worked. Figure 6 shows
the access latency, and Figure 10 shows the memory ac-
cesses breakdown. In Figure 10, a cache access is cate-
gorized as either an L1 hit, an L2 hit, or a miss that must
access off-chip memory. An L2 hit can be either a fast
local L2 hit or a slower non-local hit to an L2 slice on a
different tile. Hits through cache-to-cache transfers are
considered non-local and hits in the replicated victims
are considered local.

Analysis

From Figure 6, we observe that for the majority of the
workloads, the difference in performance between pri-
vate and shared designs is significant. One workload,

IS, has a working set that fits in the L1 cache, thus L2
policies do not matter as most accesses are L1 hits. Av-
erage access latency in this case is roughly one cycle for
all four designs.

Compared to the shared design (second bar in Fig-
ure 10), the private design (first bar in Figure 10) has
higher off-chip miss rates but also many more local hits
across the workloads. We expect the private design to
win if the difference in the off-chip miss rate is small
compare to the extra number of local hits it has com-
pared with the shared design. This is the case for work-
loads BT, CG, EP, FT, LU, and apache. On the other
hand, if the difference in off-chip miss rate is signifi-
cant, we expect the shared design to win even though
it has many fewer local hits, as it minimizes expensive
off-chip misses. This is the case for workloads MG, SP,
dbench, and checkers.

Both victim replication (third bar in Figure 10) and
victim migration (fourth bar in Figure 10) create replicas
for reduced hit latency (shown by the increase in local
L2 hits from the shared design) at the expense of slightly
increased off-chip miss rate.

Victim migration works better than victim replication
for all of these workloads. VM stores the tags of actively
shared cache blocks in the VM tag array, thus vacates
some of the actual data storage space. This space is split
between replicas and unshared global blocks. Having
more replicas is likely to increase the number of local
L2 hits, and having more global blocks is likely to re-
duce the off-chip miss rate. Both of the scenarios can
be observed by comparing the third and fourth bars in
Figure 10.

Other Configurations

As we increase the on-chip capacity, whether private or
shared works better changes even for the same work-
load depending on whether its working set fits into the
given cache size. For EP, the shared design does bet-
ter in larger caches as more of its working set fits on-
chip. For SP, the private design starts to win with larger
caches when more of its working set fits into the 1MB
local L2 slice. VM manages to be the best policy for
most of these workloads. A performance summary is
shown in Table 3.

5.2. Single-Threaded Workloads

Figures 11 to 14 show the average access latency for
the single-threaded workloads. Because they have work-
ing sets that are generally smaller than even the smallest
configuration simulated (2MB), VM did not provide no-
ticeable improvement over VR. However, VM is either

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

1

2

3

4

5

6

7

8

9

10
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 6. Access latencies of multi-threaded work-
loads. Configuration 1: 8+8/256/16FO4.

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

1

2

3

4

5

6

7

8
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 7. Access latencies of multi-threaded work-
loads. Configuration 2: 16+16/256K/24FO4.

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

1

2

3

4

5

6

7
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 8. Access latencies of multi-threaded work-
loads. Configuration 3: 16+16/512K/24FO4.

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

1

2

3

4

5

6
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 9. Access latencies of multi-threaded work-
loads. Configuration 4: 16+16/1024/24FO4.

the best policy or a very close second across all bench-
marks.

5.3. Multi-Programmed Workloads

Multiprogrammed workloads tend to have very little
sharing among the different threads, thus the private de-
sign is likely to do significantly better than the shared
design. Figures 15 to 18 confirm this intuition, where
the shared design is always the worst by a large margin.

Victim replication’s performance is close to the pri-
vate design, usually within 5%. Because there is very
little sharing, each home block is generally used by only
one tile, meaning that the cache block is stored twice
on the chip. This duplication significantly reduces the
effective capacity, making victim replication unlikely to
win over the private design. This effect is better demon-
strated in the smaller cache sizes, where capacity is at a
higher premium.

Compared to victim replication, victim migration
eliminates the need to keep a duplicate copy at the home
tile, behaving just like the private design when neces-
sary. In addition, VM allows data to be stored at a global
location, stealing limited capacity from other threads
when their working sets do not saturate their local L2
slice. While more flexible capacity stealing techniques
have been proposed in [8, 22], they are based on snoop-
ing coherence protocols, in which locating a cache block
on-chip is relatively easy. In a directory-based design,
however, this global search is likely to be very complex
and expensive. Overall, victim migration is the best pol-
icy for almost all workloads.

5.4. Reducing VM Tag Array Area Overhead

The main drawback of victim migration is the area
overhead caused by the VM tag array. For simplicity,
we have so far assumed that the VM tag array size is
identical to the regular L2 tags. However, the VM tag
array can be of any size and associativity. We selected
configuration 3 (16+16/512/24FO4) and simulated the
performance of two additional VM tag array sizes: at
50%, and 25% of the regular tag array size. The 50%
case caused no performance degradation. The 25% case
lost about 15% of the latency reduction achieved by the
full VM tag array over victim replication. We also ex-
perimented with higher VM tag array associativities and
observed no noticeable gains.

5.5. Area Comparison of Designs

The vast majority of the area in caches are occupied
by data arrays, peripheral circuitry, and interconnects,
which is the same for all four designs described in this
paper. However, the tag bits, status bits, and in our case,

directory bits, all take up non-negligible space. In this
section, we provide a simple quantified comparison of
the area occupies by the tags and directories for each of
these designs. We use the parameters in configuration 1
(8+8/256/16FO4) in the comparison. We also assume a
40-bit physical address width and 64 byte cache block
size, which are modest representatives of modern CMP
machines [25].

Table 4 shows the tag and directory area estimates in
bits/block used for each design. It also shows the total
bits overhead compared to the shared design, which re-
quires the least area. The actual overall cache area over-
head is likely to be much smaller than the ones in Table 4
when the area of peripheral circuitry and interconnects
are taken into consideration.

In the shared design, the address is used to index a
single large shared cache, the width of the tag is smaller
than that of the private design. In the 8-tile configura-
tion, three bits are used to select a home tile, making
the shared tag 3 bits shorter than that of the private de-
sign. The directory uses an 8-bit wide sharing vector. It
also leverages the existing valid and dirty status bits to
represent state, adding only one extra state bit in our de-
sign, for a total of a 9-bit directory. The private design
uses the largest area, by having a wider tag and a fully
duplicated tag array to maintain the on-chip directory.

For victim replication, the L2 tag must be wide
enough to hold physical addresses from any home tile,
thus the tag width becomes the same as the private de-
sign. Global L2 blocks redundantly set these bits to
the address index of the home tile. Replicas of remote
blocks can be distinguished from regular L2 blocks as
their additional tag bits do not match the local tile index.
The full version of victim migration incurs the largest
area overhead of all four designs. It consists of all of
the components used in victim replication, as well as the
VM tag array. However, the overhead can be reduced to
less than that of the private design by halving the size of
the VM tag array with no performance degradation.

6. Related Work

Data migration techniques [17, 7] discussed in the in-
troduction could have poor performance when applied
to tiled CMPs. A given L2 block may be repeatedly ac-
cesses by cores at opposite corners of the die. A recent
study [5] investigates the behavior of block migration
in CMPs using a variant of D-NUCA, but the proposed
protocol is complex and relies on a “smart search” al-
gorithm for which no practical implementation is given.
The benefits are also limited by the tendency for shared
data to migrate to the center of the die.

Several proposals advocate data replication [8, 27,
22], which allows sharers to replicate local copies of

shared data for fast access. Victim replication has
been already discussed in detail in this paper. CMP-
NuRAPID [8] extends NuRAPID to support data repli-
cation for CMPs based on a snooping coherence pro-
tocol. However, the actual implementation is complex
and incurs a large area overhead. In the baseline IBM
Power4 scheme [25], each node has a non-inclusive L3
cache that stores the local L2 victims. However, while
L3s can be snooped by other nodes, the local L2 vic-
tim always overwrite the local L3, causing considerable
pressure on the L3 cache and reduces the effective L3
capacity. In [22], this baseline scheme is improved by
using a small history table to selectively remove some
clean writebacks with data present in the L3.

Data replication also bears resemblance to earlier
work on remote data caching in conventional CC-
NUMA and COMA architectures [20, 9, 28], which also
try to retain local copies of data that would otherwise re-
quire a remote access. There are two major differences
in the CMP structure, however, that limit the applicabil-
ity of prior remote caching work. First, in CC-NUMAs,
all the local cache on a node is private so the alloca-
tion between local and remote data only affects the lo-
cal node. In a CMP, on-chip L2 capacity is shared by
all nodes, and so a local node’s replacement policy af-
fects cache performance of all nodes. Second, in both
CC-NUMA and COMA systems, remote data is further
away than local DRAM, thus it is beneficial to use a
large remote cache held in local DRAM. In addition,
the cost of adding a remote cache is low and does not
diminish the performance of existing L2 caches. In the
CMP structure, the remote caches are closer to the local
node than any DRAM, and any replication reduces the
effective cache capacity for blocks that will have to be
fetched from slow off-chip memory.

Several related studies include [14], which discusses
the design space for future CMPs with private L2 caches.
In [15], a hardware hybrid of shared and private designs
is proposed, in which a statically determined sharing de-
gree partitions the CMP into private regions, while each
region itself maybe contain multiple processor core that
share all of the cache resource within the region.

7. Conclusion

As wire delay continue to worsen in future micropro-
cessors, both off-chip accesses and on-chip communi-
cations must be carefully managed to efficiently utilize
the on-chip cache capacity. Typical private and shared
designs either have low hit latency or low off-chip miss
rate, but not both, prompting hybrid techniques trying
to combine the advantages of both. This paper intro-
duces victim migration, a hybrid technique that extends
the previously proposed victim replication scheme. Vic-

tim migration uses an extra migration tag array to re-
move the need to duplicate shared data at the home tile,
freeing significant space for storing additional replicas
and global data. We show that victim migration is the
best overall policy across a wide range of workloads.

8. Acknowledgments

This work is partly funded by the DARPA
HPCS/IBM PERCS project and NSF CAREER Award
CCR-0093354.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.
Clock rate versus IPC: The end of the road for conven-
tional microarchitectures. In ISCA-27, May 2000.

[2] A. Alameldeen and D. Wood. Addressing workload vari-
ability in architectural simulations. In HPCA-9, 2003.

[3] K. Barr, H. Pan, M. Zhang, and K. Asanović. Accelerat-
ing multiprocessor simulation with a memory timestamp
record. In ISPASS-2005, Austin, TX, March 2005.

[4] L. Barroso et al. Piranha: a scalable architecture based
on single-chip multiprocessing. In ISCA-27, Vancouver,
BC, Canada, May 2000.

[5] B. Beckmann and D. Wood. Managing wire delay in
large chip-multiprocessor caches. In MICRO-37, Port-
land, OR, 2004.

[6] M. Cameron and B. Rohit. Montecito: A dual-core,
dual-thread Itanium processor. IEEE Micro, 25(2):10–
20, March/April 2005.

[7] Z. Chishti, M. Powell, and T. Vijaykumar. Distance
associativity for high-performance energy-efficient non-
uniform cache architectures. In MICRO-36, San Diego,
CA, December 2003.

[8] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
replication, communication, and capacity allocation in
CMPs. In ISCA-32, Madison, WI, June 2005.

[9] F. Dahlgren and J. Torrellas. Cache-only memory archi-
tectures. IEEE Computer, 32(6), 1999.

[10] Device Group at UC Berkeley. Predictive technology
model. Technical report, UC Berkeley, 2001.

[11] A. Hartstein and T. Puzak. Optimum power/performance
pipeline depth. In MICRO-36, San Diego, CA, 2003.

[12] R. Ho, K. Mai, and M. Horowitz. The future of wires.
Proceedings of IEEE, 89(4), April 2001.

[13] M. Hrishikesh et al. The optimal logic depth per pipeline
stage is 6 to 8 FO4 inverter delays. In ISCA-29, Anchor-
age, AK, May 2002.

[14] J. Huh, D. Burger, and S. Keckler. Exploring the design
space of future CMPs. In PACT, September 2001.

[15] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. Keckler. A NUCA substrate for flexible CMP cache
sharing. In ICS05, Cambridge, MA, June 2005.

[16] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway.
The AMD Opteron processor for multiprocessor servers.
IEEE Micro, 23(2):66–76, March/April 2003.

[17] C. Kim, D. Burger, and S. W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In ASPLOS-X, San Jose, CA, October
2002.

[18] K. Krewell. Sun’s Niagara pours on the cores. Micropro-
cessor Report, 18(9):11–13, September 2004.

[19] K. Lawton. Bochs. http://bochs.sourceforge.net.

[20] H. Oi and N. Ranganathan. Utilization of cache area in
on-chip multiprocessor. In HPC, 1999.

[21] Raza Microelectronics, Inc. XLR processor product
overview, May 2005.

[22] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adap-
tive mechanisms and policies for managing cache heirar-
chies in chip multiprocessors. In ISCA-32, Madison, WI,
June 2005.

[23] E. Sprangle and D. Carmean. Increasing processor per-
formance by implementing deeper pipelines. In ISCA-29,
Anchorage, AK, May 2002.

[24] V. Srinivasan et al. Optimizing pipelines for power and
performance. In MICRO-35, Istanbul, Turkey, November
2002.

[25] J. Tendler et al. Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1), 2002.

[26] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In ISCA-30, June 2003.

[27] M. Zhang and K. Asanović. Victim Replication: Max-
imizing capacity while hiding wire delay in tiled chip
multiprocessors. In ISCA-32, Madison, WI, June 2005.

[28] Z. Zhang and J. Torrellas. Reducing remote conflict
misses: NUMA with remote cache versus COMA. In
HPCA-3, San Antonio, TX, January 1997.

Component Parameter
Configuration 1 Configuration 2 Configuration 3 Configuration 4
8+8/256/16FO4 16+16/256/24FO4 16+16/512/24FO4 16+16/1024/24FO4

L1 I-Cache Size/Associativity 8 KB/16-way 16 KB/16-way 16 KB/16-way 16 KB/16-way
L1 D-Cache Size/Associativity 8 KB/16-way 16 KB/16-way 16 KB/16-way 16 KB/16-way
L1 Load-to-Use Latency 1 cycle 1 cycle 1 cycle 1 cycle
L1 Replacement Policy Psuedo-LRU Psuedo-LRU Psuedo-LRU Psuedo-LRU
L2 Cache Slice Size/Associativity 256 KB/16-way 256 KB/16-way 512 KB/16-way 1 MB/16-way
L2 Load-to-Use Latency (per slice) 8 cycles 5 cycles 6 cycles 6 cycles
L2 Replacement Policy Random Random Random Random
External memory latency 192 cycles 128 cycles 128 cycles 128 cycles
One-hop latency 3 cycles 3 cycles 3 cycles 3 cycles
Worst case L2 hit latency (contention-free) 32 cycles 29 cycles 30 cycles 30 cycles
CMP Configuration 4 � 2 Mesh
Processor Model in-order
Cache Line Size 64 B

Table 1. Simulation parameters. The numbers for each configuration represent the cache sizes and cycle times. For example,
8+8/256/16F04 reads 8K L1I cache, 8K L1D cache, 256K L2 cache, with 16 FO4-delay cycle time.

Benchmark Description
(Instruction Count in Billions)

Multi-Threaded Benchmarks
BT (1.7) class S. block-tridiagonal CFD application
CG (5.0) class W. conjugate gradient kernel
EP (6.8) class W. embarassingly parallel kernel
FT (6.6) class S. 3X 1D fast fourier transform (-O0)
IS (5.5) class W. integer sort. (icc-v8)
LU (6.2) class R. LU decomposition. with SSOR CFD application
MG (5.1) class W. multigrid kernel
SP (6.7) class R. scalar pentagonal CFD application
apache (3.3) Apache’s ’ab’ worker threading model, 2000 requests, 3 at a time (gcc 2.96)
dbench (3.3) executes Samba-like syscalls, 3 clients, 10000 requests (gcc 2.96)
checkers (2.9) Cilk checkers (parallel ����� search), Black 6, White 5 (Cilk 5.3.2, gcc 2.96)

Single-Threaded Benchmarks
bzip (3.8) bzip2 compression algorithm version 0.1
crafty (1.2) A high-performance chess program designed around a 64-bit word
eon (2.9) A probabilistic ray tracer
gap (1.1) A language and library designed mostly for computing in groups
gcc (6.4) gcc compiler version 2.7.2.2 for Motorola 88100 processor
gzip (1.0) Data compression program using LZ77 for GNU
mcf (1.7) Single-depot vehicle scheduling algorithm in public mass transportation
parser (5.6) A word processing parsing tool
perlbmk (1.8) A cut-down version of Perl v5.005 03 without most OS-specific features
twolf (1.5) The TimberWolfSC place and route tool
vortex (1.5) An single-user object-oriented database transaction program
vpr (5.3) A place and route tool for FPGAs

Multi-Programmed Benchmarks
mix0 (23.9) bzip, crafty, eon, gap, gcc, gzip, mcf, parser
mix1 (24.8) gcc, gzip, mcf, parser, perlbmk, twolf, vortex, vpr
mix2 (19.1) bzip, crafty, eon, gap, perlbmk, twolf, vortex, vpr
mix3 (22.8) bzip, gap, mcf, twolf, crafty, gcc, parser, vortex
mix4 (19.1) bzip, gap, mcf, twolf, eon, gzip, perlbmk, vpr
mix5 (25.7) crafty, gcc, parser, vortex, eon, gzip, perlbmk, vpr
mix6 (12.7) crafty, eon, gap, gzip, mcf, perlbmk, twolf, vortex
mix7 (21.5) bzip, gap, gzip, mcf, parser, twolf, vortex, vpr
mix8 (28.0) bzip, crafty, eon, gap, gcc, mcf, parser, vpr

Table 2. Benchmarks Descriptions. Three different categories of benchmarks are used: single-threaded
benchmarks, multi-threaded benchmarks, and multi-programmed benchmarks.

bts cgw epw fts isr lur mgw spr ap82k db81k ck8s
88

90

92

94

96

98

100

Benchmarks

B
re

ak
do

w
n

(%
)

Data Accesses Breakdown

Misses (Off−chip Memory Accesses)
Hits in Non−Local L2 Data
Hits in Local L2 Data
Hits in L1

Figure 10. Memory access breakdown of multi-threaded programs. Moving from left to right, the four bars for each
workload are for the private design, shared design, victim replication, and victim migration, respectively. Hits from cache-
to-cache transfers are considered non-local and hits from replicas are considered local.

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
0

5

10

15
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 11. Access latencies of single-threaded work-
loads. Configuration 1: 8+8/256/16FO4.

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
0

2

4

6

8

10

12
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

ps
sh
vr
vm

Figure 12. Access latencies of single-threaded work-
loads. Configuration 2: 16+16/256K/24FO4.

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
0

2

4

6

8

10

12
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 13. Access latencies of single-threaded work-
loads. Configuration 3: 16+16/512/24FO4.

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
0

1

2

3

4

5

6

7

8

9

10
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 14. Access latencies of single-threaded work-
loads. Configuration 4: 16+16/1024/24FO4.

spec0 spec1 spec2 spec3 spec4 spec5 spec6 spec7 spec8
0

0.5

1

1.5

2

2.5

3

3.5

4
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

ps
sh
vr
vm

Figure 15. Access latencies of multi-programmed work-
loads. Configuration 1: 8+8/256/16FO4.

spec0 spec1 spec2 spec3 spec4 spec5 spec6 spec7 spec8
0

0.5

1

1.5

2

2.5

3

3.5
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

ps
sh
vr
vm

Figure 16. Access latencies of multi-programmed work-
loads. Configuration 2: 16+16/256/24FO4.

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
0

0.5

1

1.5

2

2.5

3

3.5
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 17. Access latencies of multi-programmed work-
loads. Configuration 3: 16+16/512/24FO4.

spec0 spec1 spec2 spec3 spec4 spec5 spec6 spec7 spec8
0

0.5

1

1.5

2

2.5

3
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

private
shared
VR
VM

Figure 18. Access latencies of multi-programmed work-
loads. Configuration 4: 16+16/1024/24FO4.

Configuration 1 Configuration 2 Configuration 3 Configuration 4
8+8/256/16FO4 16+16/256/24FO4 16+16/512/24FO4 16+16/1024/24FO4

Reductin (%) Reductin (%) Reductin (%) Reductin (%)
Workload VM/S VM/P VM/VR VM/S VM/P VM/VR VM/S VM/P VM/VR VM/S VM/P VM/VR

Multi-Threaded Workloads
BT 45.3 -1.9 -0.6 11.5 -0.6 0.2 18.9 -0.6 0.4 9.4 0.0 0.0
CG 30.3 -2.7 2.0 30.0 -5.6 1.9 37.4 -10.3 4.8 77.3 -22.1 14.2
EP 4.1 0.3 0.3 -0.4 2.7 -0.5 1.8 7.5 1.1 14.8 34.5 3.9
FT 26.4 5.6 7.1 17.5 3.5 2.5 25.2 1.6 3.6 25.8 12.3 3.8
IS 0.8 0.6 0.1 -0.0 0.1 0.0 0.3 1.3 0.1 0.2 0.9 0.5
LU 27.3 9.0 12.3 31.6 3.5 14.4 40.5 12.2 9.4 50.1 13.7 3.7
MG 6.1 9.3 2.8 6.0 12.9 3.4 4.1 9.2 1.2 9.6 14.5 4.3
SP 7.7 22.1 4.0 14.6 23.1 5.0 7.7 15.5 3.3 16.5 0.2 2.0
apache 14.0 -0.2 3.6 7.3 10.9 0.9 8.8 -0.4 -1.1 15.4 0.7 -1.6
dbench 4.5 9.9 2.2 8.2 6.4 6.0 9.6 17.0 0.3 22.3 10.7 3.1
checkers 8.7 32.5 4.7 8.1 31.9 4.0 5.3 36.2 2.1 4.9 32.0 1.7
Avg 15.9 7.6 3.5 12.2 8.1 3.4 14.5 8.1 2.3 22.4 8.9 3.2

Single-Threaded Workloads
bzip 22.3 42.3 11.2 17.5 32.0 0.8 19.4 26.0 2.4 27.6 22.1 4.9
crafty 105.0 9.4 0.2 43.6 10.4 0.7 42.3 5.4 0.5 43.4 1.1 -1.7
eon 47.2 0.1 -2.1 5.7 1.1 -0.5 5.1 2.9 -0.1 4.5 1.8 -0.5
gap 38.0 16.9 2.8 18.9 11.5 0.2 14.5 13.9 1.3 18.0 14.0 2.6
gcc 42.6 19.2 1.1 31.3 14.0 -0.4 29.8 10.8 1.3 39.5 8.0 -0.9
gzip 81.6 41.1 3.3 81.6 21.5 -0.5 86.2 26.0 0.5 65.0 5.8 -0.4
mcf 28.5 54.9 7.9 38.1 48.6 1.8 49.2 9.6 9.3 79.2 11.7 0.3
parser 41.7 45.7 3.9 31.8 38.1 0.9 34.7 31.5 2.2 50.1 18.6 -0.4
perl 9.1 11.8 2.2 7.8 9.1 1.4 4.2 6.8 0.4 3.1 6.9 -1.6
twolf 127.4 -5.3 1.6 123.6 2.3 1.9 124.2 1.6 0.5 101.9 -0.7 -2.0
vortex 48.2 14.8 2.2 28.8 13.3 2.6 30.7 6.9 -1.6 29.5 5.1 -1.8
vpr 78.0 14.2 0.2 63.8 11.5 -1.1 75.6 9.1 1.3 69.2 -0.8 -1.1
Avg 55.8 22.1 2.9 41.0 17.8 0.7 43.0 12.5 1.5 44.3 7.8 -0.2

Multi-Programmed Workloads
mix0 44.6 4.7 5.3 23.6 5.1 9.1 30.9 8.2 10.6 34.6 2.7 5.5
mix1 53.1 6.3 7.3 36.3 3.5 12.7 42.0 3.6 8.9 49.6 1.1 4.4
mix2 59.7 7.4 4.1 35.1 4.3 6.7 36.0 9.0 5.1 40.3 2.7 0.5
mix3 54.0 5.4 9.4 31.7 5.5 10.6 34.0 5.0 4.9 42.8 0.5 4.3
mix4 58.2 5.9 10.8 37.1 2.9 11.7 34.6 1.3 2.9 44.1 -0.5 3.1
mix5 54.7 6.4 5.9 30.0 5.7 4.9 36.2 8.3 3.5 38.6 2.6 2.3
mix6 54.5 0.1 6.7 30.8 0.5 10.7 33.6 -2.6 8.0 39.0 -1.4 4.1
mix7 63.9 4.4 10.0 42.2 5.3 12.7 45.3 7.3 12.7 51.6 1.5 4.9
mix8 56.2 7.8 11.6 26.4 4.8 6.6 31.6 2.1 4.9 38.9 1.1 4.2
Avg 55.4 5.4 7.9 32.6 4.2 9.5 36.0 4.7 6.8 42.2 1.1 3.7

Table 3. Access latency reduction achieved by victim migration. The three numbers for each workload indicate the percent-
age reduction with respect to the shared design (VM/S), the private design (VM/P), and victim replication (VM/VR).

Design Tag width Dir. entry width Total Width Bit/Block Overhead vs. Shared
Shared 25 9 34 0.0%
Private 28 28 56 4.0%

Victim Replication 28 9 37 0.6%
Victim Migration (1/1) 28 43 71 6.8%
Victim Migration (1/2) 28 26 54 3.7%
Victim Migration (1/4) 28 20 48 2.6%

Table 4. Cache area overhead of different designs.

